Подсказка

Для эффективного поиска ответа на Ваш вопрос, выберите вопросительное слово, например "Как" и соответственно этому вопросительному слову составьте свой вопрос. Если Ваш вопрос не содержит вопросительного слова, то выберите в списке -//- и просто напишите свой вопрос.

Где используется последовательность Фибоначчи?

Спрашивает Антон Анатольевич   13 мая 2008
Расскажите, очень интересно!
Ответ
Последовательность чисел Фибоначчи на протяжении многих веков, начиная с эпохи великого Леонардо и вплоть до сегодняшних дней, привлекает к себе внимание. Может быть последний пример - нашумевший роман Дэна Брауна "Код Давинчи".

Прежде всего, несколько слов о числах Фибоначчи вообще и об их производном - золотом сечении в частности. Известно, что в ряд Фибоначчи - это бесконечная последовательность чисел, каждое из которых является суммой двух предыдущих.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,….

Происхождение этой последовательности обычно связывается с именем итальянского купца Леонардо Пизанского, более известного под прозвищем Фибоначчи. Он был великим математиком своего времени и его роль в развитии математики трудно переоценить. По его трудам, превосходящим арабские и средневековые европейские сочинения, учили математику до XVI-XVII веков.

Фибоначчи как бы напомнил человечеству то, что было известно ему еще с древнейших времен, как "золотое сечение". Геометрический смысл этой пропорции, заключается в таком делении отрезка, когда он весь относится к его большей части, как самая большая часть относится к меньшей. Значение золотого сечения иррационально, то есть оно не может быть вычислено абсолютно точно. Однако его можно приблизительно получить, разделив два соседних числа в ряде Фибоначчи, причем, чем больше величины чисел, тем точнее будет результат. Деление большего числа на меньшее дает значение Ф*=1.618…., а разделив меньшее на большее приблизительно получим Ф=0.618…...

По дошедшим до нас памятникам архитектуры и образцам материальной культуры далеких эпох можно предположить о знании древними этих соотношений. Хотя обычно считается, что понятие золотого сечения ввел Пифагор (VI в. до н.э), но вполне возможно, что это знание более древнее и он позаимствовал эти знания у египтян или вавилонян. Пропорции пирамиды Хеопса, храмов, барельефов того времени, некоторых предметов быта и украшений, из гробницы Тутанхамона соответствуют соотношениям золотого сечения. Французский архитектор Ле Kорбюзье нашел эти соответствия в пропорциях на рельефах изображающих фараонов, они присутствуют в фасаде храмового комплекса Парфенона. На древних рельефах из египетских гробниц люди держат в руках измерительные инструменты, в которых зафиксированы эти замечательные пропорции.

О золотом сечении знал Платон (IV в до н.э), это отношение упоминается в "Началах" Евклида. После Евклида подобными исследованиями занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с ним познакомились по арабским переводам "Начал" Евклида. Переводчик Дж.Kампано из Наварры (III в.) сделал к переводу комментарии. Надо отметить, что в то время эти знания были тайными, тщательно оберегались от непосвященных и хранились в строгой тайне.

В эпоху Возрождения золотому сечению уделяли внимание Леонардо да Винчи, Альбрехт Дюрер и творец начертательной геометрии монах Лука Пачоли. Он нашел в нем "божественную суть" - выражение триединства Бога сына, Бога отца и Бога духа Святого. Подразумевалось, что малый отрезок - олицетворение Бога сына, больший отрезок - Бога отца, а все вместе дух Святой.

В последующие века изучение этой пропорции продолжались. В 1855 г. немецкий и профессор Цейзинг опубликовал труд "Эстетические исследования", где объявил пропорцию золотого сечения универсальным для всех явлений природы и искусства. На основании исследования размеров несколько тысяч человеческих тел он пришел к выводу, что оно выражает средний статистический закон и пропорции человеческого тела описываются отношениями членов ряда Фибоначчи. Это проявляется в отношении самых разных частей тела - длины плеча, предплечья и кисти, кисти и пальцев и т.д.

Золотое сечение встречается не только в искусстве и архитектуре, но и в природе. Пропорции ряда Фибоначчи присутствуют в расположении листьев на деревьях, различных семян, в биоритмах и функционировании головного мозга и зрительного восприятия, музыкальных тонах, стихотворных размерах, в генных структурах живых организмов и тому подобное.

Проявление чисел Фибоначчи не ограничивается законами восприятия и живой природой. Из истории астрономии известно, что в XVIII в. немецкий астроном И. Тициус, с помощью ряда Фибоначчи нашел закономерность в расстояниях между планетами солнечной системы. Сегодня имеются многочисленные данные по проявлению золотого сечения в самых различных физических системах - в энергетических переходах элементарных частиц, в строении некоторых химических соединений и т.д. Установлены связи золотого сечения со свойствами воды, громкости и частоты звука, спектра видимого света, физико-механических свойств твердых тел и т.п. Эти факты - свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности. Известны даже попытки создания хронологии человеческого общества на основе ряда Фибоначчи.

В качестве причин, объясняющих эти явления обычно приводятся результаты исследований показавших, что наиболее устойчивые природные и социальные конфигурации имеют Фибоначчи-подобную форму, так как являются оптимальными в смысле энергетики и экономии ресурсов.

В XX веке на основе последовательности Фибоначчи была создана одна из наиболее успешных методик анализа финансовых, товарных и иных рынков - волновая теория Эллиота. При наличии некоторого воображения можно усмотреть вполне очевидные аналогии между рынком финансовым и тем, что назовем "рынком политическим". Под последним, будем понимать политическую систему регулирования гражданского общества, где присутствуют интересы различных групп населения, а возможные противоречия между ними разрешаются путем договоренностей в рамках демократических процедур. Вообще, общеизвестно, что политика - это искусство компромисса. А компромисс - это всегда сделка, причем не очень неважно, торговая, посредническая или политическая. В этом смысле все политические деятели - игроки политического рынка.

При этом совершенно не важно, что движет политиками: великие идеи, личные амбиции, интересы поддерживающих их финансово-промышленных групп или определенных групп населения, либо просто, собственная корысть. Важно то, что они, проявляя свою активность, создают политические партии, продвигают некие проекты, реализуемые в законотворческой или иной деятельности. Здесь мы имеем тот же парадокс рыночной экономики. В том случае, если деятельность политиков происходит в правовом поле, независимо от мотивации она объективно полезна обществу, так как своей суетой и мельтешением эти "брокеры политического рынка" решают задачи саморегуляции общественного организма. Продолжая аналогии можно сказать, что "трейдерами и инвесторами политического рынка" можно считать те силы, которые финансируют политическую деятельность.

Если это так, то возникает соблазн применить методы анализа финансовых рынков к рынкам политическим. Одним из таких методов технического анализа является использование волнового закона Эллиота. Более шестидесяти лет тому назад Ральф Эллиотт разработал теорию поведения рынка, которую в наиболее полном виде изложил в книге "Закон природы - секрет Вселенной", вышедшей в 1946 году. Он уже тогда был уверен в том, что его теория охватывает не только поведение фондовых индексов, но и более общие законы природы, управляющие деятельностью человеческого общества.

Суть подхода Эллиота сводится к тому, что общество развивается и изменяется в виде распознаваемых моделей. Он выделил более десятка типов моделей движения ("волн"), которые возникают в потоке рыночных цен, повторяющихся по форме, но не обязательно по времени или амплитуде. Им были даны названия, определения и иллюстрация этих моделей.

Согласно его теории движение происходит по "старому доброму принципу" три шага вперед два шага назад и волны разделяются - импульсные (вперед) и корректирующие (назад). Действительно, достаточно даже беглого взгляда на график индекса Доу-Джонса или на поведение курса валют на рынке FOREX, чтобы увидеть волновое движение огромного количества больших и малых волн. Их отличает свойство, называемое "самоподобием", присущее так называемым фракталам.

Эллиот утверждал, что независимо от размера, форма волн достаточно стабильна, а порядок их чередования поддается разумному объяснению. Закон волн - это модель развития и упадка. Соотношения между отдельными волнами базируются на числах, полученных из ряда Фибоначчи и в частности на золотом сечении.

Некоторые авторы пытаются применить волновой закон Эллиота даже для анализа истории человечества, его глобального развития. Не ставя перед собой столь масштабных задач, попробуем рассмотреть с позиций применимости последовательности Фибоначчи для анализа длительности некоторых процессов, происходивших в России в XX веке, и даже попытаемся дать некий прогноз на первые десятилетия века XXI.

Необходимо отметить, что если для фондового рынка сегодня разработаны и широко используются разнообразные индексы (Доу-Джонса, NASDAQ и др.), что позволяет строить и анализировать графики их изменения во времени. Для рынка политического, такие показатели, возможно, еще предстоит создать в будущем. Интуитивно понятно, что эти гипотетические аналоги индекса Доу-Джонса должны иметь вероятностную, энтропийную природу.

Источник: http://www.vaal.ru/show.php?id=156
25 мая 2008 16:58

Другие ответы
1
В прогнозировании не существует гарантированного способа применения временного фактора самого по себе. Тем не менее, зачастую временные соотношения, основанные на последовательности Фибоначчи, выходят за рамки гадания на числах, и, кажется, соответствуют ... Еще
13 мая 2008 23:52
2
Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ... Еще
14 мая 2008 00:04
3
http://shkolazhizni.ru/archive/0/n-8278/ О чем умолчали Гете, Пифагор и ведьмы...

http://shkolazhizni.ru/archive/0/n-4042/ Возможен разговор по душам на языке математики?

14 мая 2008 11:43